QUALITATIVE ASSESSMENT

For
SR 44 at Continental Boulevard
Sumter County
Section 1807000
Mile Post 15.938

Prepared for:

THE FLORIDA DEPARTMENT OF TRANSPORTATION DISTRICT 5 TRAFFIC OPERATIONS

719 South Woodland Boulevard
DeLand, Florida 32720

Continuing Services Contract for Traffic Operations
Financial Project No. 237988-1-32-11
Contract C-9R60
Work Order No. 54
Study 3
Prepared by:
Vanasse Hangen Brustlin, Inc.
225 East Robinson Street, Suite 300
Orlando, FL 32801

April 2020

Qualitative Assessment
For SR 44 at Continental Boulevard
Financial Project No. 237988-1-32-11
Contract C-9R60
Work Order No. 54
Study 3

This item has been digitally Signed and Sealed by Vinod Vishwanatha on the date adjacent to the seal.
Printed Copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Vanasse Hangen Brustlin, Inc.
225 E. Robinson Street, Suite 300
Orlando, FL - 32801
Certificate of Authorization 3932

Figure 1 - Location Map
SR 44 at Continental Boulevard
Sumter County
Section: 1807000
Mile Post: 15.938

EXISTING CONDITION

The characteristics of the study intersection of SR 44 at Continental Boulevard located in Sumter County, Florida are summarized below. An intersection condition diagram and photographs of each respective approach are provided in the following pages.

Features	Main Street
Minor Street	SR 44 oriented east-west; four-lane urban principal arterial Continental Boulevard oriented north-south approaching SR 44 from the south
Number of Intersection Approach Lanes	EB Approach: one left-turn lane, two through and one right-turn lane WB Approach: one left-turn lane, two through lanes NB Approach: one left-turn lane and one right-turn lane
Traffic Control	Unsignalized (NB approach controlled by Stop Sign)
Posted Speeds	SR 44: 55 mph Continental Boulevard: Not Posted SR 44: None Continental Boulevard: None
SIS/NHS Designation	No sidewalks present along SR 44 and Continental Boulevard

SR 44 at Continental Boulevard East Approach

Exhibit 1: Looking west into the intersection along SR 44

Exhibit 2: Looking east from the intersection along SR 44

SR 44 at Continental Boulevard
 West Approach

Exhibit 3: Looking east into the intersection along SR 44

Exhibit 4: Looking west from the intersection along SR 44

SR 44 at Continental Boulevard South Approach

Exhibit 5: Looking north into the intersection along Continental Boulevard

Exhibit 6: Looking south from the intersection along Continental Boulevard

COLLISION ANALYSIS

According to crash records obtained by VHB from Signal4Analytics and CARS, there were seven reported crashes in the latest 36-month period from January 01, 2017 to December $31^{\text {st }}, 2019$. The total property damage of these crashes was estimated at $\$ 45,900$. Three of the crashes were angle type, one rear-end, one sideswipe, one right-turn and one hit a utility pole. No bicycle or pedestrian crashes were reported.

The number of crashes by types are as follows:

- Angle
- Rear-End
- Sideswipe
- Right-turn
- Hit Utility Pole

1 (14.3\%)
The number of crashes by contributing cause are as follows:

- Failure to Yield ROW

4 (57.1\%)

- Followed too Closely

1 (14.3\%)

- Improper Backing
- Improper Lane Change

1 (14.3\%)
The number of crashes by lighting condition are as follows:

- Daylight
- Dark - Not Lighted

1 (14.3\%)
There were five Property Damage Only (PDO) crashes of the seven reported crashes. These seven crashes resulted in a total of five injuries and zero fatalities. The three angle crashes involved a northbound vehicle performing a left-turn maneuver on to SR 44 to travel west. The contributing cause for all the three angle type crashes was failure to yield right-of-way.

The three angle crashes recorded over a three-year period are considered susceptible to correction by a traffic signal. The peak year with the highest incidence of angle crashes was in 2018 with two crashes which is lower than the five crashes required to satisfy the MUTCD crash warrant criteria.

The rear-end crash occurred along Continental Boulevard in the northbound left-turn, where the vehicle at fault followed too closely to the vehicle waiting to perform a northbound left-turn maneuver. The sideswipe crash occurred along eastbound SR 44 when a vehicle in the inside through lane changed lanes into the outside through lane. The hit a utility pole crash type occurred along Continental Boulevard, when the vehicle at fault realized he was traveling north on the southbound lanes and started to back out and hit a light pole. The right turn crash type occurred when northbound right turning vehicle failed to yield the right-of-way to the eastbound through vehicle.

CRASH SUMMARY

EIGHT HOUR TURNING MOVEMENT COUNTS

Eight-hour turning movement counts were collected at the intersection of SR 44 at Continental Boulevard from 7:00-9:00 a.m., 11:00 a.m. - 1:00 p.m., and 2:00-6:00 p.m. during a typical weekday. The traffic counts along SR 44 revealed a balanced east-west directional flow during both the a.m. and p.m. peak periods, and a peak eastbound directional flow during the mid-day. Hourly directional traffic volumes on eastbound SR 44 range from 809 vehicles per hour (vph) in the a.m. period, to $1,120 \mathrm{vph}$ during the midday, to $1,144 \mathrm{vph}$ in the p.m. period. Westbound SR 44 directional traffic volumes range from 745 vph in the a.m. period, to 935 vph in the mid-day peak and $1,095 \mathrm{vhp}$ in the p.m. peak. Northbound Continental Boulevard directional traffic volumes range from 62 vph in the a.m. peak, to 92 vph during the mid-day and 76 vph during the p.m. period. The traffic movement distributions along each approach are listed below.

	NB	EB	WB
Left-Turn/U-turn	46.6%	0.0%	4.9%
Through	0.0%	96.7%	95.1%
Right Turn	53.4%	3.3%	0.0%

Heavy vehicles accounted for approximately 6.8% of the total traffic on SR 44 and 2.0% of traffic on Continental Boulevard. The heavy vehicle percentage for each individual movement during the eight-hour turning movement count period are summarized below.

	NB	EB	WB
Left-Turn/U-turn	2.0%	50.0%	3.0%
Through	0.0%	6.6%	7.4%
Right Turn	2.1%	1.1%	0.0%

No pedestrian and bicycles were recorded during the turning movement counts. Turning movement and pedestrian counts are provided in the Appendix section of this report.

A cursory review of the minor street approach traffic volumes revealed that the northbound left-turn movement recorded an hourly volume range of 23 vph to a high of 52 vph during the 8 -hour count period. The right-turn movement recorded a range of 19 vph to 51 vph . The hourly volumes on Continental Boulevard, particularly the left-turn lane movement, do not meet the minimum thresholds for meeting the applicable MUTCD 8 -hour and 4 -hour traffic volume signal warrants.

QUALITATIVE ASSESSMENT

A qualitative assessment based on field observations was performed by a registered engineer during the peak period (i.e., highest mainline volume and highest side street volumes) at the study intersection of SR 44 at Continental Boulevard. The purpose of the qualitative assessment was to evaluate prevailing operating traffic flow conditions and identify areas where improvements would be potentially beneficial for safety and efficiency.

1. The intersection of SR 44 at Continental Boulevard is a three-legged (T-shaped) intersection with the northbound approach being controlled with a STOP sign. The intersection is located at the apex point of a horizontal curve alignment (i.e., concave to the north) on SR 44. As such, the eastbound and westbound lanes of SR 44 are super-elevated with Continental Boulevard approaching SR 44 on a slight upslope. The median opening provides a vertical transition to match the elevation difference between the eastbound and westbound lanes.
2. The horizontal curve on SR 44 provides a clear view of the intersection from all approaches.
3. The eastbound and westbound travel lanes along SR 44 are separated by a 40 -foot grass median and a 28 -foot median where left turn lanes are provided at the median opening.
4. During the peak period, the northbound left turn volumes was observed to be higher than the northbound right turn volume. The northbound left-turning vehicles were observed to use the median as a staging area to find an adequate gap along the westbound traffic volume to complete the left-turn maneuver.
5. During the peak period, a maximum queue length of three vehicles were observed in the northbound left turn lane and a maximum queue length of two vehicles were observed in the northbound right turn lane.
6. During the peak period, the delay experienced by the northbound left turning vehicles ranged from five to 15 seconds.
7. During the peak period, the eastbound approach was observed to consist of a higher percentage of heavy vehicles in comparison to the westbound approach.
8. Vehicles arrived in platoons along the eastbound and westbound approaches, while the northbound approach has a sporadic arrival.
9. During the peak period, a maximum queue length of two vehicles was observed in the eastbound left turn lane (making a U-Turn). The delay experienced by the eastbound U-turning vehicles was observed to be less than 10 seconds.
10. During the peak period, a maximum queue length of three vehicles was observed in the westbound left turn lane. The delay experienced by the westbound left turning vehicles was observed to be less than 10 seconds.
11. The Stop sign pole located in the southeast quadrant of the study intersection is slightly bent such that the face of the stop sign is not frontally facing the northbound travel way.
12. Existing signing and pavement markings comply with the traffic controls for street terminations per the FDOT Standard Plans.
13. A cursory review of the MUTCD traffic signal warrants reveals the intersection failed to meet traffic volume and crash warrants for signalization at this time. The applicable MUTCD signal warrant worksheets are provided in the Appendix.

RECOMMENDATIONS

Based on observations of traffic flow patterns and demand, vehicle traffic counts and vehicle composition, crash records, qualitative assessment of the intersection operation, and consideration of potential improvement options, this study recommends maintaining the existing stop-sign facing the northbound approach.

As a maintenance recommendation, add a one-way sign panel (R6-1L) to the existing Yield sign assembly located on the median as shown in the Conceptual Improvement Diagram in accordance with the Florida Design Manual (FDM) Chapter 230.

Appendix

FLORIDA DEPARTMENT OF TRANSPORTATION
SUMMARY OF VEHICLE MOVEMENTS

SECTION:	1807000	CITY:	Wildwood	COUNTY:	Sumter
State route:	SR 44	INTERSECTING ROUTE:	Continental Bllvd	MILEPOST:	15.938
OBSERVER:	VHB	DATE:	1/19/20	COMPLETED BY:	VV
WEATHER:	Good	ROAD CONDITION:	Good	DATE COMPLETED:	2/25/20

TIME	NORTHBOUND						SOUTHBOUND						total	EASTBOUND						WESTBOUND						total
BEGIN/END	u	L	T	R	RTOR	тот	u	L	T	R	RTOR	тот	N/s	u	1	T	R	RTOR	тот	\cup	L	T	R	RTOR	тот	E/w
7:00-8:00	0	23	0	19	0	42	0	0	0	0	0	0	42	1	0	799	9	0	809	9	21	671	0	0	701	1,510
8:00-9:00	0	26	0	36	0	62	0	0	0	0	0	0	62	0	0	779	16	0	795	4	27	714	0	0	745	1,540
11:00-12:00	0	29	0	51	0	80	0	0	0	0	0	0	80	0	0	1,043	30	0	1,073	3	42	890	0	0	935	2,008
12:00-13:00	0	52	0	40	0	92	0	0	0	0	0	0	92	0	0	1,080	40	0	1,120	7	47	833	0	0	887	2,007
14:00-15:00	0	32	0	40	0	72	0	0	0	0	0	0	72	2	0	1,125	53	0	1,180	6	53	884	0	0	943	2,123
15:00-16:00	0	33	0	43	0	76	0	0	0	0	0	0	76	0	0	1,101	39	0	1,140	6	44	1,011	0	0	1,061	2,201
16:00-17:00	0	26	0	34	0	60	0	0	0	0	0	0	60	1	0	1,097	46	0	1,144	3	49	1,043	0	0	1,095	2,239
17:00-18:00	0	30	0	25	0	55	0	0	0	0	0	0	55	0	0	948	36	0	984	7	39	1,024	0	0	1,070	2,054
total	0	251	0	288	0	539	0	0	0	0	0	0	539	4	0	7,972	269	0	8,245	45	322	7,070	0	0	7,437	15,682

Percentage	0.0\%	46.6\%	0.0\%	53.4\%	0.0\%	100.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	N/A	0.0\%	0.0\%	96.7\%	3.3\%	0.0\%	100.0\%	0.6\%	4.3\%	95.1\%	0.0\%	0.0\%	100.0\%	N/A
Maximum	0	52	0	51	0	92	0	0	0	0	0	0	92	2	0	1,125	53	0	1,180	9	53	1,043	0	0	1,095	2,239
Minimum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Heavy Veh	5		0	6	0	11	0.0\%		0	0	0	0	11			523	3	0	528	3.0\%		522	0	0	533	1,061
\% Heavy Veh			0.0\%	2.1\%		2.0\%			0.0\%	0.0\%		0.0\%	2.0\%	50.0\%		6.6\%	1.1\%		6.4\%			7.4\%	0.0\%		7.2\%	6.8\%

Condition B - Interruption of Continuous Traffic

Condition B is intended for application where Condition A is not satisfied and the traffic volume on a major street is so heavy that traffic on the minor intersecting street suffers excessive delay or conflict in entering or crossing the major street.

Applicable:	\square Yes	\square No
100\% Satisfied:	\square Yes	\square No
80\% Satisfied:	\square Yes	\square No
70\% Satisfied:	\square Yes	\square No

Number of traffic on	for moving approach	Vehicles per hour on majorstreet (total of both approaches)			Vehicles per hour on minorstreet (one direction only)		
Major	Minor	100\% ${ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\% ${ }^{\text {c }}$	100\% ${ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\% ${ }^{\text {c }}$
1	1	750	600	525	75	60	53
2 or more	1	900	720	630	75	60	53
2 or more	2 or more	900	720	630	100	80	70
1	2 or more	750	600	525	100	80	70

${ }^{\text {a }}$ Basic Minimum hourly volume
${ }^{\mathrm{b}}$ Used for combination of Conditions A and B after adequate trial of other remedial measures
${ }^{\text {c }}$ May be used when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000

Record 8 highest hours and the corresponding major-street and minor-street volumes in the Instructions Sheet.

Eight Highest Hours								
Street	Σ $\stackrel{\Sigma}{<}$ $\stackrel{\circ}{i}$	$\begin{aligned} & \underset{i}{\Sigma} \\ & \stackrel{\rightharpoonup}{0} \\ & \dot{\phi} \end{aligned}$	\sum i 8 $\stackrel{B}{-}$			$\begin{aligned} & \sum_{0} \\ & \text { ob } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \Sigma \\ & \underset{0}{2} \\ & \stackrel{\rightharpoonup}{\dot{*}} \end{aligned}$	$\begin{aligned} & \Sigma_{0}^{n} \\ & \text { ob } \\ & \text { in } \end{aligned}$
Major	1,510	1,540	2,008	2,007	2,123	2,201	2,239	2,054
Minor	23	26	29	52	32	33	26	30

Existing Volumes

TRAFFIC SIGNAL WARRANT SUMMARY

City:	Wildwood
County:	
District:	$\mathbf{1 8 - \text { Sumter }}$
Five	

Engineer:	
Date:	VHB

Major Street:	SR 44	Lanes:	2	Major Approach Speed:	55
Minor Street:	Continental Boulevard	Lane	1	Minor Approach Speed	25

MUTCD Electronic Reference to Chapter 4: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/part4.pdf

WARRANT 7 -CRASH EXPERIENCE

Record hours where criteria are fulfilled, the corresponding volume, and other information in the boxes provided. The warrant is satisfied if all three of the criteria are fulfilled.

Applicable:YesNo
Satisfied:Yes \square N No

Criteria		Hour		Volume		Met?		Fulfilled?			
		Major	Minor	Yes	No	Yes	No				
One of the warrants to the right is met.	Warrant 1, Condition A (80\% satisfied)								X		X
	Warrant 1, Condition B (80\% satisfied)						X				
	Warrant 4, Pedestrian Volume at 80% of volume requirements: \# ped/hr for four (4) hours or \# ped/hr for one (1) hour.						X				
Adequate trial of other remedial measure has failed 2. to reduce crash frequency.		Measure tried:	None						X		
Five or more reported crashes, of types susceptible 3. to correction by signal, have occurred within a 12 month period.		Observed Crash Types:	Angle	Number of crashes per 12 months:			2		X		

